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Introduction: Mn - Mp
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PDG (2012)

Mn �Mp = 1.29333217(42) MeV

Given only electro-static forces, one would predict

Mp > Mn

Standard Model has two sources of isospin breaking

Q̂ =
1

6
11 +

1

2
�3 mq = m̂11� �⇥3

The contribution from                is comparable in size 
but opposite in sign

md �mu



Introduction: Mn - Mp

Mn - Mp plays an extremely significant role in the evolution 
of the universe as we know it

The neutron lifetime is highly sensitive to the value of this 
mass splitting

Initial conditions for Big Bang 
Nucleosynthesis (BBN)
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Introduction: Mn - Mp

What is Big Bang Nucleosynthesis?
Describes our understanding of the evolution of the early universe 
from a time approximately one second after the Big Bang to 
approximately 15 minutes after the Big Bang.

At this time, the only relevant degrees of freedom in the universe 
are protons, neutrons, electrons and photons

A chain of coupled nuclear reactions produces the primordial 
abundance of light nuclei H, D, 3He, 4He, 7Li

Given the measured nuclear reactions, the only input/output to our 
understanding of BBN is the primordial ratio of baryons to photons
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Introduction: Mn - Mp Primordial Universe (Mass Fraction)

~75% H!
~25% 4He
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Abundance of light nuclear 
elements versus cosmic 
time after Big Bang.!
Something special is 
happening around 3 min.
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t ⇠ 1 sec t ⇠ 3 min
T ⇠ 1 MeV T ⇠ 0.1 MeV

e�
⌫̄e

t ⇠ 15min
T ⇠ 0.1� MeV
t ⇠ 3+ min

Bd ⌧n

T ⇠ 0.01 MeV

Initial conditions
deuterium 
binding energy

neutron !
lifetime
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Mn�Mp
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Big Bang Nucleosynthesis



Introduction: Mn - Mp
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No Sun!
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Alternative means to determine!
Cottingham Formulation 

We would like to understand the Neutron-Proton mass 
splitting from first principles

Well understood from lattice QCD

Disparate scales relevant for QCD and QED 
make this a very challenging problem to solve 
with LQCD: large systematic uncertainties

Separation only valid at LO 
in isospin breaking

�Mmd�mu

�M�

�M�

What do we know?

Mn �Mp = �M� + �Mmd�mu
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1.5 2.0 2.5 3.0 3.5

�Mmd�mu
n�p [MeV]

2.26(71) NPLQCD [hep-lat/0605014]

2.51(52) Blum et. al. [1006.1311]

3.13(57) QCDSF-UKQCD [1206.3156]

2.90(63) RM123 [1303.4896]

2.28(26) BMWc [1306.2287]

2.39(21) weighted average

What do we know?

�Mmd�mu
n�p = 2.39(21) MeV



Introduction: Mn - Mp What do we know?

Gasser & Leutwyler!
Nucl. Phys. B94 (1975)!
Phys. Rept. 87 (1982)  “Quark Masses”

central value from !
elastic contribution

uncertainty from estimates of!
inelastic contributions

Experiment & lattice QCD

�M� = �0.76(30) MeV

Can we improve our understanding of these contributions?

Of course!

�Mmd�mu
n�p = 2.39(21) MeV

�Mphys
p�n � �Mmd�mu

LQCD = 1.10(21) MeV



Electromagnetic Self Energy: Cottingham Formula

⇥M�
p�n = �f.s. ⇥ fp�n(QCD,QED)



Electromagnetic Self Energy: Cottingham Formula
Walker-Loud, Carlson, Miller  PRL 108 (2012) [arXiv:1203.0254]

�M� = �Mel + �M inel + �Msub + �M ct

elastic  inelastic  unknown 
subtraction  

counter-term 
renormalization

�M�
p�n = 1.30(03)(47) MeV

precisely 
determined

newly 
determined 
(precisely)

newly 
determined 
(imprecisely) 

determined 
by !

J.C. Collins

Gasser & Leutwyler�M�
p�n = 0.76(30) MeV

Experiment & LQCD�Mphys
p�n � �Mmd�mu

LQCD = 1.10(21) MeV



Electromagnetic Self Energy: Cottingham Formula

Updating G&L result uncovered a “technical oversight”

The application of the Cottingham Formula requires the 
use of a subtracted dispersion integral.!
!
Gasser & Leutwyler had an argument to evade the 
unknown subtraction function.!
!
The argument was based on incorrect assumptions about 
scaling violations of the parton model!
!
this has gone (mostly) unnoticed since 1982
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The Electromagnetic Self-Energy Contribution to Mp �Mn

and the Isovector Nucleon Magnetic Polarizability

André Walker-Loud,1, 2 Carl E. Carlson,3 and Gerald A. Miller1, 4

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
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3Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795.
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We update the determination of the isovector nucleon electromagnetic self-energy, valid to leading
order in QED. A technical oversight in the literature concerning the elastic contribution to Cotting-
ham’s formula is corrected and modern knowledge of the structure functions is used to precisely
determine the inelastic contribution. We find �M�

p�n = 1.30(03)(47) MeV. The largest uncertainty
arises from a subtraction term required in the dispersive analysis, which can be related to the isovec-
tor magnetic polarizability. With plausible model assumptions, we can combine our calculation with
additional input from lattice QCD to constrain this polarizability as: �p�n = �0.87(85)⇥ 10�4fm3.

PACS numbers: 13.40.Dk, 13.40.Ks, 13.60.Fz, 14.20.Dh

Given only electrostatic forces, one would predict that
the proton is more massive than the neutron but the
opposite actually occurs [1–3]:

Mn �Mp = 1.29333217(42) MeV . (1)

Before we knew of quarks and gluons there were many
attempts to explain this contradiction, see Ref. [4] for a
review. We now know there are two sources of isospin
breaking in the standard model, the masses of the up
and down quarks as well as the electromagnetic interac-
tions between quarks governed by the charge operator.
The e�ects of the mass di�erence between down and up
quarks are larger and of the opposite sign than those of
electromagnetic e�ects, see the reviews [5–7]. The net
result of the quark mass di�erence and electromagnetic
e�ects is well known, Eq. (1), but our ability to disen-
tangle the contributions from these two sources remains
poorly constrained.

In contrast, lattice QCD calculations have matured sig-
nificantly. There are now calculations performed with the
light quark masses at or near their physical values [8–12],
reproducing the ground state hadron spectrum within
a few percent. These advances have allowed for calcu-
lations to begin including explicit isospin breaking ef-
fects from both the quark masses [13–17] and electro-
magnetism [15, 18–21]. While the lattice calculations
of md � mu e�ects are robust, the contributions from
electromagnetism are less mature and su�er from larger
systematics, due in large part to the disparity between
the photon mass and a typical hadronic scale. Improved
knowledge of md�mu and its e�ects in nucleons will en-
hance the ability to use e�ective field theory to compute
a variety of isospin-violating (charge asymmetric) e�ects
in nuclear reactions [7, 22–27].

An application [28] of the Cottingham sum rule [29],
which relates the electromagnetic self-energy of the nu-
cleon to measured elastic and inelastic cross sections,
gives the result ⇤M�

p�n = 0.76 ± 0.30 MeV. Given the

high present interest in the precise value of ⇤M�
p�n and

its many possible implications, it is worthwhile to revisit
this result. Many high quality electron scattering exper-
iments have been performed since 1975 and there have
also been theoretical advances. The central aim of this
work is to provide a modern, robust evaluation of ⇤M�

p�n.
We will show the precision of this e�ort is severely lim-
ited by our knowledge of the required subtraction func-
tion. Given plausible model assumptions, this limitation
is translated into our knowledge of the isovector nucleon
magnetic polarizability, ⇥p�n = ⇥p

M �⇥n
M , for which even

the sign is presently unknown [30].
Cottingham’s sum rule– In perturbation theory, the

electromagnetic self-energy of the nucleon, ⇤M� , can be
related to the spin averaged forward Compton scattering
tensor

Tµ⇤ =
i

2

�
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⇥
d4⇧ eiq·⌅⇧p⌥|T {Jµ(⇧)J⇤(0)} |p⌥⌃ , (2)
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, (3)

where we work in the nucleon rest frame pµ = (M,0),
� = e2/4⌃ and the subscript R implies the integral has
been renormalized. Performing a Wick rotation of the
integration contour to imaginary photon energy, the nu-
cleon self-energy can be related to the structure functions
arising from the scattering of space-like photons through
dispersion theory, giving rise to what is known as Cot-
tingham’s formula (the Cottingham sum rule) [29, 31]. In
principle, this allows the integral in Eq. (3) to be com-
puted in a model independent fashion with input from ex-
perimental data. There are a few issues which complicate
the realization of this method: a subtracted dispersive
analysis is required introducing an unknown subtraction
function [32, 33]; the integral in Eq. (3) diverges loga-
rithmically in the ultra-violet region and requires renor-
malization [34]. We review these issues briefly.
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Tµ⇤ , for which there are two common parameterizations,
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Performing the Wick rotation ⇤ ⇧ i⇤ and the variable
transformation Q2 = q2 + ⇤2, the self-energy becomes

⇥M� =
�

8⌅2

⌦ �2

0
dQ2

⌦ +Q

�Q
d⇤

↵
Q2 � ⇤2

Q2

Tµ
µ

M
+ ⇥M ct(�) (6)

where ⇥M ct(�) derives from counterterms required for
renormalization [34] and the Lorentz contracted Comp-
ton tensor is
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The scalar functions (Ti, ti) can be evaluated using a dis-
persive analysis. It is known the (T1, t1) functions re-
quire a subtracted dispersive analysis while the (T2, t2)
functions can be evaluated with an unsubtracted disper-
sion relation [32]. In Ref. [28], it was claimed the elastic
contributions to t1 could be evaluated with an unsub-
tracted dispersive analysis. However, performing an un-
subtracted dispersive analysis of the elastic contributions
to Eqs. (7) by inserting a complete set of elastic states
into Eq. (2), leads to inconsistent results:
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with ⇧el ⌅ Q2

4M2 . If both parameterizations of the elastic
contribution were to satisfy unsubtracted dispersion rela-
tions, the following positive-definite integral would have
to vanish
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Equating Eqs. (4a) and (4b) allows one to solve for Ti in
terms of ti and vice versa, and to demonstrate that if the
elastic contributions to T1(t1) do not satisfy an unsub-
tracted dispersive analysis, then neither will the elastic
contributions to t1(T1). Eq. (8b) was used in Ref. [28]
and is often quoted as the elastic contribution to the nu-
cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a
subtracted dispersive analysis of (T1, t1), and an unsub-
tracted analysis of (T2, t2), using a mass-independent
renormalization scheme (dimensional regularization) one
arrives at [34]
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The scalar functions (Ti, ti) can be evaluated using a dis-
persive analysis. It is known the (T1, t1) functions re-
quire a subtracted dispersive analysis while the (T2, t2)
functions can be evaluated with an unsubtracted disper-
sion relation [32]. In Ref. [28], it was claimed the elastic
contributions to t1 could be evaluated with an unsub-
tracted dispersive analysis. However, performing an un-
subtracted dispersive analysis of the elastic contributions
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Equating Eqs. (4a) and (4b) allows one to solve for Ti in
terms of ti and vice versa, and to demonstrate that if the
elastic contributions to T1(t1) do not satisfy an unsub-
tracted dispersive analysis, then neither will the elastic
contributions to t1(T1). Eq. (8b) was used in Ref. [28]
and is often quoted as the elastic contribution to the nu-
cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a
subtracted dispersive analysis of (T1, t1), and an unsub-
tracted analysis of (T2, t2), using a mass-independent
renormalization scheme (dimensional regularization) one
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Ti(�, Q
2) = Ti(��, Q2)

Crossing Symmetric

Ti(�, Q
2) =

1

2⇥

I
d�0

Ti(�0, Q2)

�0 � �

Ti(⇥, Q
2) =

1

2⇤

Z 1

�t

d⇥0
2⇥0

(⇥0)2 � ⇥2
2ImTi(⇥

0 + i�, Q2)

(provided contour and infinity vanishes)

⌫

dispersion integral = Cauchy contour integral



Electromagnetic Self Energy: Cottingham Formula
if contour at infinity does not vanish

subtracted dispersion integral

g(�) =
Ti(�, Q2)

�2

introduces new pole at !
which you need to subtract

⌫ = 0

Ti(⇥, Q
2) =

⇥2

2⇤

Z 1

�t

d⇥0
2⇥0

⇥02(⇥02 � ⇥2)
2ImTi(⇥

0 + i�, Q2) + Ti(0, Q
2)

measured experimentally unknown function

⌫
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⌫
It is known that !
!

satisfies unsubtracted dispersion 
integral while!
!

requires a subtraction!
Regge behavior

T1(�, Q
2) [t1(�, Q

2)]

T2(�, Q
2) [t2(�, Q

2)]

H. Harari: PRL 17 (1966)

H.D. Abarbanel S. Nussinov: Phys.Rev. 158 (1967)

Imt1[T1]
���
p�n

/ �1/2
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Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982)

at the time, introducing an unknown subtraction function 
would be disastrous for getting a precise value:!

they provided an argument based upon various assumptions to 
avoid the subtracted dispersive integral

�M�
p�n = 0.76(30) MeV

central value: from elastic contribution!
uncertainty: estimates of inelastic structure contributions

however, one can show their arguments are incorrect: !
one must face the subtraction function
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Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982)

what is the flaw in the argument?
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Lorentz invariance significantly constrains the form of
Tµ⇤ , for which there are two common parameterizations,

Tµ⇤(p, q) = �D(1)
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Performing the Wick rotation ⇤ ⇧ i⇤ and the variable
transformation Q2 = q2 + ⇤2, the self-energy becomes
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where ⇥M ct(�) derives from counterterms required for
renormalization [34] and the Lorentz contracted Comp-
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The scalar functions (Ti, ti) can be evaluated using a dis-
persive analysis. It is known the (T1, t1) functions re-
quire a subtracted dispersive analysis while the (T2, t2)
functions can be evaluated with an unsubtracted disper-
sion relation [32]. In Ref. [28], it was claimed the elastic
contributions to t1 could be evaluated with an unsub-
tracted dispersive analysis. However, performing an un-
subtracted dispersive analysis of the elastic contributions
to Eqs. (7) by inserting a complete set of elastic states
into Eq. (2), leads to inconsistent results:
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with ⇧el ⌅ Q2

4M2 . If both parameterizations of the elastic
contribution were to satisfy unsubtracted dispersion rela-
tions, the following positive-definite integral would have
to vanish
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Equating Eqs. (4a) and (4b) allows one to solve for Ti in
terms of ti and vice versa, and to demonstrate that if the
elastic contributions to T1(t1) do not satisfy an unsub-
tracted dispersive analysis, then neither will the elastic
contributions to t1(T1). Eq. (8b) was used in Ref. [28]
and is often quoted as the elastic contribution to the nu-
cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a
subtracted dispersive analysis of (T1, t1), and an unsub-
tracted analysis of (T2, t2), using a mass-independent
renormalization scheme (dimensional regularization) one
arrives at [34]
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where ⇧ = ⇤2/Q2, Fi(⇤, Q2) are the standard nucleon
structure functions and ⇤th = m⌅ + (m2
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Performing the Wick rotation ⇤ ⇧ i⇤ and the variable
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The scalar functions (Ti, ti) can be evaluated using a dis-
persive analysis. It is known the (T1, t1) functions re-
quire a subtracted dispersive analysis while the (T2, t2)
functions can be evaluated with an unsubtracted disper-
sion relation [32]. In Ref. [28], it was claimed the elastic
contributions to t1 could be evaluated with an unsub-
tracted dispersive analysis. However, performing an un-
subtracted dispersive analysis of the elastic contributions
to Eqs. (7) by inserting a complete set of elastic states
into Eq. (2), leads to inconsistent results:
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with ⇧el ⌅ Q2

4M2 . If both parameterizations of the elastic
contribution were to satisfy unsubtracted dispersion rela-
tions, the following positive-definite integral would have
to vanish
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Equating Eqs. (4a) and (4b) allows one to solve for Ti in
terms of ti and vice versa, and to demonstrate that if the
elastic contributions to T1(t1) do not satisfy an unsub-
tracted dispersive analysis, then neither will the elastic
contributions to t1(T1). Eq. (8b) was used in Ref. [28]
and is often quoted as the elastic contribution to the nu-
cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a
subtracted dispersive analysis of (T1, t1), and an unsub-
tracted analysis of (T2, t2), using a mass-independent
renormalization scheme (dimensional regularization) one
arrives at [34]
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is there some motivation to pick     vs      ? ti Ti
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Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982)

what is the flaw in the argument?

in the point limit (electron) t1(�, Q
2) = 0!

t1(⇥, Q
2) =

2

Q2

2

4 Q4G2
M�G2

E
1+�

(Q2 � i�)2 � 4M2⇥2
�
✓
F 2
1 � G2

E + ⇤G2
M

1 + ⇤

◆3

5

for the nucleon (with motivated resummations) the elastic 
contribution is

| {z }

“Fixed-Pole” missed by 
unsubtracted dispersion relation

� =
Q2

4M2
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Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982)

what is the flaw in the argument?

in the point limit (electron) t1(�, Q
2) = 0!

t1(⇥, Q
2) =

2

Q2

2

4 Q4G2
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E
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5

for the nucleon (with motivated resummations) the elastic 
contribution is

| {z }

numerically, this term is negligible
� =

Q2

4M2
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Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982)

what is the flaw in the argument?

in the point limit (electron) t1(�, Q
2) = 0!

real problem comes in the Regge limit:

Imt1(�, Q
2) =

⇥M�

Q4

h
2xF1(x,Q

2)� F2(x,Q
2)
i

x =
Q2

2M�

in the strict DIS limit: Callan-Gross relation

Q2
fixed, � ! 1

2xF1(x)� F2(x) = 0
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in the point limit (electron) t1(�, Q
2) = 0!
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in the point limit (electron) t1(�, Q
2) = 0!

real problem comes in the Regge limit:
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UV safe
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what is the flaw in the argument?

in the point limit (electron) t1(�, Q
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subtracted dispersion integral is unavoidable
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evaluation of various contributions



Electromagnetic Self Energy: Cottingham Formula
perform once subtracted dispersion integral for !
and unsubtracted dispersion integral for 

T1(t1)
T2(t2)

2

Lorentz invariance significantly constrains the form of
Tµ⇤ , for which there are two common parameterizations,

Tµ⇤(p, q) = �D(1)
µ⇤ T1(⇤,�q2) +D(2)

µ⇤ T2(⇤,�q2) (4a)

= d(1)µ⇤ q2t1(⇤,�q2)� d(2)µ⇤ q
2t2(⇤,�q2) (4b)

where p · q = M⇤ and
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,

d(2)µ⇤ =
1

M2

⇤
pµp⇤ �

p · q
q2

(pµq⇤ + p⇤qµ) +
(p · q)2

q2
gµ⇤

⌅
,

D(2)
µ⇤ =

1

M2

⇤
pµ �

p · q
q2

qµ

⌅⇤
p⇤ �

p · q
q2

q⇤

⌅
. (5)

Performing the Wick rotation ⇤ ⇧ i⇤ and the variable
transformation Q2 = q2 + ⇤2, the self-energy becomes
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where ⇥M ct(�) derives from counterterms required for
renormalization [34] and the Lorentz contracted Comp-
ton tensor is

Tµ
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1 + 2

⇤2

Q2

⌅
Q2t2(i⇤, Q

2) . (7b)

The scalar functions (Ti, ti) can be evaluated using a dis-
persive analysis. It is known the (T1, t1) functions re-
quire a subtracted dispersive analysis while the (T2, t2)
functions can be evaluated with an unsubtracted disper-
sion relation [32]. In Ref. [28], it was claimed the elastic
contributions to t1 could be evaluated with an unsub-
tracted dispersive analysis. However, performing an un-
subtracted dispersive analysis of the elastic contributions
to Eqs. (7) by inserting a complete set of elastic states
into Eq. (2), leads to inconsistent results:
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with ⇧el ⌅ Q2

4M2 . If both parameterizations of the elastic
contribution were to satisfy unsubtracted dispersion rela-
tions, the following positive-definite integral would have
to vanish
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1 + ⇧el
. (9)

Equating Eqs. (4a) and (4b) allows one to solve for Ti in
terms of ti and vice versa, and to demonstrate that if the
elastic contributions to T1(t1) do not satisfy an unsub-
tracted dispersive analysis, then neither will the elastic
contributions to t1(T1). Eq. (8b) was used in Ref. [28]
and is often quoted as the elastic contribution to the nu-
cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a
subtracted dispersive analysis of (T1, t1), and an unsub-
tracted analysis of (T2, t2), using a mass-independent
renormalization scheme (dimensional regularization) one
arrives at [34]
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where ⇧ = ⇤2/Q2, Fi(⇤, Q2) are the standard nucleon
structure functions and ⇤th = m⌅ + (m2

⌅ +Q2)/2M ;
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where ⌥ = ⇧2/Q2, Fi(⇧, Q2) are the standard nucleon structure functions and ⇧th = m⇤ + (m2
⇤ +Q2)/2M ;

⇤Msub = � 3�
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2) , (13)

and
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C1,i�Oi,0 , (14)

where C1,i are Wilson coe⇤cients determined from the operator product expansion of the counterterms [? ]. The UV
divergence has been entirely cancelled by the counterterm and ⇤M̃ ct is a remaining finite contribution with residual
scale dependence. The scales �0 and �1 can be chosen arbitrarily provided their values are in the asymptotic scaling
region. Restricting our attention to the isospin breaking contribution, with 2⇤ = md � mu

⇤M̃ ct
p�n = 3� ln

⇤
�2
0

�2
1

⌅
e2umu � e2dmd

8⌃M⇤
�p|⇤(ūu � d̄d)|p (15)

with eu = 2/3 and ed = �1/3. In QCD, mu,d ⇤ ⇤, so the entire contribution is numerically second order in
isospin breaking, O(�⇤), and for practical purposes can be neglected [? ]. Estimating the size of this term, with
�2
1 = 100 GeV2, �2

0 = 2 GeV2 yields |⇤M̃ ct
p�n| < 0.02 MeV.

The remaining contribution to the self-energy is the subtraction term, which can not be directly related to exper-
imentally measured cross sections. We now have a better theoretical understanding of this term enabling a more
robust determination of its contribution than has been previously made. While the function is not known, the low
and high Q2 limits can be determined in a model independent fashion; the asymptotic region is constrained by the
operator product expansion (OPE) to scale as limQ⇥⇤ T1(0, Q2) ⇤ 1/Q2 [? ] while the low Q2 limit is fixed by
non-relativistic QED [? ? ? ? ? ]

T1(0, Q
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(1 + ⌅)2r2M � r2E
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�
+O(Q4) , (16)

where ⌅ ⇥ F2(0) is the anomalous magnetic moment, rE(rM ) is proportional to the slope of the electric (magnetic) form
factor and commonly denoted as the nucleon electric (magnetic) charge radius and ⇥M is the magnetic polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges quadratically resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form required by the OPE, so we are necessarily led to introduce
model dependence. The first few terms in Eq. (16) are recognized as the low-Q2 expansion of elastic form factors and
the magnetic polarizability term is the leading inelastic contribution. In evaluating the elastic contributions to Tµ⇥

only the elastic u-spinors need be used in the dispersion relation. If one uses the full Feynman propagator in the full
amplitude, a procedure known to be correct in the point-limit (as for the electron), and vertex functions with ordinary
F1 and F2 form factor contributions, then the specific elastic terms of Eq. (16) would arise [? ? ]. This suggests a
re-summation in which one uses the appropriate elastic form factors. The inelastic contribution can be multiplied by
a dipole form factor (1 +Q2/m2

0)
�2, such that it has the correct asymptotic limits as Q2 ⌅ 0,⌃. The parameter m2

0
should be a typical hadronic scale and we will take m2

0 = 0.71 GeV2. The subtraction term is then approximated by
two pieces which have the correct low and high Q2 limiting behavior,
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where ⌥ = ⇧2/Q2, Fi(⇧, Q2) are the standard nucleon structure functions and ⇧th = m⇤ + (m2
⇤ +Q2)/2M ;
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where C1,i are Wilson coe⇤cients determined from the operator product expansion of the counterterms [? ]. The UV
divergence has been entirely cancelled by the counterterm and ⇤M̃ ct is a remaining finite contribution with residual
scale dependence. The scales �0 and �1 can be chosen arbitrarily provided their values are in the asymptotic scaling
region. Restricting our attention to the isospin breaking contribution, with 2⇤ = md �mu
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with eu = 2/3 and ed = �1/3. In QCD, mu,d ⇤ ⇤, so the entire contribution is numerically second order in
isospin breaking, O(�⇤), and for practical purposes can be neglected [? ]. Estimating the size of this term, with
�2
1 = 100 GeV2, �2

0 = 2 GeV2 yields |⇤M̃ ct
p�n| < 0.02 MeV.

The remaining contribution to the self-energy is the subtraction term, which can not be directly related to exper-
imentally measured cross sections. We now have a better theoretical understanding of this term enabling a more
robust determination of its contribution than has been previously made. While the function is not known, the low
and high Q2 limits can be determined in a model independent fashion; the asymptotic region is constrained by the
operator product expansion (OPE) to scale as limQ⇥⇤ T1(0, Q2) ⇤ 1/Q2 [? ] while the low Q2 limit is fixed by
non-relativistic QED [? ? ? ? ? ]
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where ⌅ ⇥ F2(0) is the anomalous magnetic moment, rE(rM ) is proportional to the slope of the electric (magnetic) form
factor and commonly denoted as the nucleon electric (magnetic) charge radius and ⇥M is the magnetic polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges quadratically resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form required by the OPE, so we are necessarily led to introduce
model dependence. The first few terms in Eq. (16) are recognized as the low-Q2 expansion of elastic form factors and
the magnetic polarizability term is the leading inelastic contribution. In evaluating the elastic contributions to Tµ⇥

only the elastic u-spinors need be used in the dispersion relation. If one uses the full Feynman propagator in the full
amplitude, a procedure known to be correct in the point-limit (as for the electron), and vertex functions with ordinary
F1 and F2 form factor contributions, then the specific elastic terms of Eq. (16) would arise [? ? ]. This suggests a
re-summation in which one uses the appropriate elastic form factors. The inelastic contribution can be multiplied by
a dipole form factor (1 +Q2/m2
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Tµ⇤ , for which there are two common parameterizations,

Tµ⇤(p, q) = �D(1)
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Performing the Wick rotation ⇤ ⇧ i⇤ and the variable
transformation Q2 = q2 + ⇤2, the self-energy becomes
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where ⇥M ct(�) derives from counterterms required for
renormalization [34] and the Lorentz contracted Comp-
ton tensor is
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The scalar functions (Ti, ti) can be evaluated using a dis-
persive analysis. It is known the (T1, t1) functions require
a subtracted dispersive analysis while the (T2, t2) func-
tions can be evaluated with an unsubtracted dispersion
relation [32, 33]. In Ref. [28], it was claimed the elastic
contributions to t1 could be evaluated with an unsub-
tracted dispersive analysis. However, performing an un-
subtracted dispersive analysis of the elastic contributions
to Eqs. (7) by inserting a complete set of elastic states
into Eq. (2), leads to inconsistent results:
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with ⇧el ⌅ Q2

4M2 . If both parameterizations of the elastic
contribution were to satisfy unsubtracted dispersion rela-
tions, the following positive-definite integral would have
to vanish
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Equating Eqs. (4a) and (4b) allows one to solve for Ti in
terms of ti and vice versa, and to demonstrate that if the
elastic contributions to T1(t1) do not satisfy an unsub-
tracted dispersive analysis, then neither will the elastic
contributions to t1(T1). Eq. (8b) was used in Ref. [28]
and is often quoted as the elastic contribution to the nu-
cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a
subtracted dispersive analysis of (T1, t1), and an unsub-
tracted analysis of (T2, t2), using a mass-independent
renormalization scheme (dimensional regularization) one
arrives at [34]
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where ⇧ = ⇤2/Q2, Fi(⇤, Q2) are the standard nucleon
structure functions and ⇤t = m⌅ + (m2
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Tµ⇤ , for which there are two common parameterizations,
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µ⇤ T2(⇤,�q2) (4a)

= d(1)µ⇤ q2t1(⇤,�q2)� d(2)µ⇤ q
2t2(⇤,�q2) (4b)

where p · q = M⇤ and

d(1)µ⇤ = D(1)
µ⇤ = gµ⇤ �

qµq⇤
q2

,

d(2)µ⇤ =
1

M2

⇤
pµp⇤ �

p · q
q2

(pµq⇤ + p⇤qµ) +
(p · q)2

q2
gµ⇤

⌅
,

D(2)
µ⇤ =

1

M2

⇤
pµ �

p · q
q2

qµ

⌅⇤
p⇤ �

p · q
q2

q⇤

⌅
, (5)

Performing the Wick rotation ⇤ ⇧ i⇤ and the variable
transformation Q2 = q2 + ⇤2, the self-energy becomes

⇥M� =
�

8⌅2

⌦ �2

0
dQ2

⌦ +Q

�Q
d⇤

↵
Q2 � ⇤2

Q2

Tµ
µ

M
+ ⇥M ct(�) (6)

where ⇥M ct(�) derives from counterterms required for
renormalization [34] and the Lorentz contracted Comp-
ton tensor is

Tµ
µ = �3T1(i⇤, Q

2) +

⇤
1� ⇤2

Q2

⌅
T2(i⇤, Q

2) , (7a)

= �3Q2 t1(i⇤, Q
2) +

⇤
1 + 2

⇤2

Q2

⌅
Q2t2(i⇤, Q

2) . (7b)

The scalar functions (Ti, ti) can be evaluated using a dis-
persive analysis. It is known the (T1, t1) functions require
a subtracted dispersive analysis while the (T2, t2) func-
tions can be evaluated with an unsubtracted dispersion
relation [32, 33]. In Ref. [28], it was claimed the elastic
contributions to t1 could be evaluated with an unsub-
tracted dispersive analysis. However, performing an un-
subtracted dispersive analysis of the elastic contributions
to Eqs. (7) by inserting a complete set of elastic states
into Eq. (2), leads to inconsistent results:

⇥Mel
unsub,a =

�

⌅

⌦ �2

0
dQ

⌥�
G2

E(Q
2)� 2⇧elG

2
M (Q2)

⇥ (1 + ⇧el)3/2 � ⇧el3/2 � 3
2

 
⇧el

1 + ⇧el
� 3

2
G2

M (Q2)
⇧el3/2

1 + ⇧el

�
, (8a)

⇥Mel
unsub,b =

�

⌅

⌦ �2

0
dQ

⌥�
G2

E(Q
2)� 2⇧el G

2
M (Q2)

⇥ (1 + ⇧el)3/2 � ⇧el3/2

1 + ⇧el
+ 3G2

M (Q2)
⇧el3/2

1 + ⇧el

�
, (8b)

with ⇧el ⌅ Q2

4M2 . If both parameterizations of the elastic
contribution were to satisfy unsubtracted dispersion rela-
tions, the following positive-definite integral would have
to vanish

3�

2⌅

⌦ ⇥

0
dQ
 
⇧el

G2
E(Q

2) + ⇧elG2
M (Q2)

1 + ⇧el
. (9)

Equating Eqs. (4a) and (4b) allows one to solve for Ti in
terms of ti and vice versa, and to demonstrate that if the
elastic contributions to T1(t1) do not satisfy an unsub-
tracted dispersive analysis, then neither will the elastic
contributions to t1(T1). Eq. (8b) was used in Ref. [28]
and is often quoted as the elastic contribution to the nu-
cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a
subtracted dispersive analysis of (T1, t1), and an unsub-
tracted analysis of (T2, t2), using a mass-independent
renormalization scheme (dimensional regularization) one
arrives at [34]

⇥M� = ⇥Mel + ⇥M inel + ⇥Msub + ⇥M̃ ct , (10)

with

⇥Mel =
�

⌅

⌦ �2
0

0
dQ

⌥
3
 
⇧elG2

M

2(1 + ⇧el)
+

�
G2

E � 2⇧el G2
M

⇥

1 + ⇧el

⇤
⇧
(1 + ⇧el)

3/2 � ⇧el
3/2 � 3

2

 
⇧el

⌃�
, (11)

⇥M inel =
�

⌅

⌦ �2
0

0

dQ2

2Q

⌦ ⇥

⇤th

d⇤

⌥

3F1(⇤, Q2)

M

⇧
⇧3/2 � ⇧

 
1 + ⇧ +

 
⇧/2

⇧

⌃

+
F2(⇤, Q2)

⇤

⇧
(1 + ⇧)3/2 � ⇧3/2 � 3

2

 
⇧

⌃�
, (12)

where ⇧ = ⇤2/Q2, Fi(⇤, Q2) are the standard nucleon
structure functions and ⇤t = m⌅ + (m2

⌅ +Q2)/2M ;

⇥Msub = � 3�

16⌅M

⌦ �2
0

0
dQ2 T1(0, Q

2) , (13)

and

⇥M̃ ct = � 3�

16⌅M

⌦ �2
1

�2
0

dQ2
 

i

C1,i⌥Oi,0� , (14)OPE: operators and Wilson coeffic.!
J.C. Collins: Nucl. Phys. B149 (1979)
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with

⇤Mel =
�

⌃

⌦ �2
0

0
dQ

⌥
3
↵
⌥elG2

M

2(1 + ⌥el)
+

�
G2

E � 2⌥el G2
M

⇥

1 + ⌥el

⇧
(1 + ⌥el)

3/2 � ⌥el
3/2 � 3

2

↵
⌥el

⌃�
, (11)

⇤M inel =
�

⌃

⌦ �2
0

0

dQ2

2Q

⌦ ⇤

⇥th

d⇧

⌥
3F1(⇧, Q2)

M

⇧
⌥3/2 � ⌥

↵
1 + ⌥ +

↵
⌥/2

⌥

⌃
+

F2(⇧, Q2)

⇧

⇧
(1 + ⌥)3/2 � ⌥3/2 � 3

2

↵
⌥

⌃�
,

(12)

where ⌥ = ⇧2/Q2, Fi(⇧, Q2) are the standard nucleon structure functions and ⇧th = m⇤ + (m2
⇤ +Q2)/2M ;

⇤Msub = � 3�

16⌃M

⌦ �2
0

0
dQ2 T1(0, Q

2) , (13)

and

⇤M̃ ct = � 3�

16⌃M

⌦ �2
1

�2
0

dQ2
 

i

C1,i�Oi,0 , (14)

where C1,i are Wilson coe⇤cients determined from the operator product expansion of the counterterms [? ]. The UV
divergence has been entirely cancelled by the counterterm and ⇤M̃ ct is a remaining finite contribution with residual
scale dependence. The scales �0 and �1 can be chosen arbitrarily provided their values are in the asymptotic scaling
region. Restricting our attention to the isospin breaking contribution, with 2⇤ = md � mu

⇤M̃ ct
p�n = 3� ln

⇤
�2
0

�2
1

⌅
e2umu � e2dmd

8⌃M⇤
�p|⇤(ūu � d̄d)|p (15)

with eu = 2/3 and ed = �1/3. In QCD, mu,d ⇤ ⇤, so the entire contribution is numerically second order in
isospin breaking, O(�⇤), and for practical purposes can be neglected [? ]. Estimating the size of this term, with
�2
1 = 100 GeV2, �2

0 = 2 GeV2 yields |⇤M̃ ct
p�n| < 0.02 MeV.

The remaining contribution to the self-energy is the subtraction term, which can not be directly related to exper-
imentally measured cross sections. We now have a better theoretical understanding of this term enabling a more
robust determination of its contribution than has been previously made. While the function is not known, the low
and high Q2 limits can be determined in a model independent fashion; the asymptotic region is constrained by the
operator product expansion (OPE) to scale as limQ⇥⇤ T1(0, Q2) ⇤ 1/Q2 [? ] while the low Q2 limit is fixed by
non-relativistic QED [? ? ? ? ? ]

T1(0, Q
2) = 2⌅(2 + ⌅) � Q2

⌥
2

3

�
(1 + ⌅)2r2M � r2E

⇥

+
⌅

M2
� 2M

⇥M

�

�
+O(Q4) , (16)

where ⌅ ⇥ F2(0) is the anomalous magnetic moment, rE(rM ) is proportional to the slope of the electric (magnetic) form
factor and commonly denoted as the nucleon electric (magnetic) charge radius and ⇥M is the magnetic polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges quadratically resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form required by the OPE, so we are necessarily led to introduce
model dependence. The first few terms in Eq. (16) are recognized as the low-Q2 expansion of elastic form factors and
the magnetic polarizability term is the leading inelastic contribution. In evaluating the elastic contributions to Tµ⇥

only the elastic u-spinors need be used in the dispersion relation. If one uses the full Feynman propagator in the full
amplitude, a procedure known to be correct in the point-limit (as for the electron), and vertex functions with ordinary
F1 and F2 form factor contributions, then the specific elastic terms of Eq. (16) would arise [? ? ]. This suggests a
re-summation in which one uses the appropriate elastic form factors. The inelastic contribution can be multiplied by
a dipole form factor (1 +Q2/m2

0)
�2, such that it has the correct asymptotic limits as Q2 ⌅ 0,⌃. The parameter m2

0
should be a typical hadronic scale and we will take m2

0 = 0.71 GeV2. The subtraction term is then approximated by
two pieces which have the correct low and high Q2 limiting behavior,

T1(0, Q
2) ⇧ 2G2

M (Q2) � 2F 2
1 (Q

2)

+Q22M
⇥M

�

⇤
m2

0

m2
0 +Q2

⌅2
, (17)

�Mel
���
p�n

= 1.39(02) MeV

insensitive to value of         since form factors fall as 

1.5 GeV2  �2
0  2.5 GeV2

⇤0

�2
0 = 2 GeV2

1/Q4

central values:

uncertainties:

uncertainty from Monte Carlo evaluation of 
parameters describing form factors
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Wtrans = 3.1 GeV as the transition between the two pa-
rameterizations, the inelastic contribution is

⇤M inel
��
p�n

= 0.057(16) MeV. (20)

The uncertainties are estimated by the range of �2
0 given

above as well as varying the transition value of W be-
tween 2.5 < Wtrans < 3.5 GeV. These two variations
dominate the uncertainty estimate. The numerical inte-
gration is insensitive to the upper limit of the W integra-
tion through Wmax ⌅ 200 GeV (or x ⌅ 10�4).

We are left with the subtraction terms. Using the
model assumptions described above, the contribution
from the elastic subtraction term, Eq. (18a), is

⇤Msub
el

��
p�n

= �0.62(02) MeV (21)

It is interesting to note the sum of Eqs. (19) and (21)
is surprisingly close to that of Ref. [28] (although the
individual proton and neutron elastic self energies are
di⇥erent).

The most troublesome contribution to evaluate is that
of the inelastic subtraction term, Eq. (18b). This contri-
bution is proportional to the isovector nucleon magnetic
polarizability ⇥p�n. The determination of this isovec-
tor quantity was part of the motivation for the recent
deuterium Compton scattering experiment, MAX-Lab at
Lund [49], for which we are still awaiting results. The
HIGS experiment [50] at TUNL will also help determine
this quantity. From chiral perturbation theory, one ex-
pects the isovector polarizabilities to be small; the lead-
ing contribution to the polarizabilities occurs at order
P 3 and these are purely isoscalar. The isovector contri-
butions arise at order P 4 and are suppressed in the chiral
power counting [51]. A recent review provides the con-
servative estimate ⇥p�n = �1± 1⇥ 10�4 fm3 [30]. Using
this in Eq. (18b) provides the determination

⇤Msub
inel

��
p�n

= 0.47± 0.47 MeV , (22)

(a smaller value of m2
0 would reduce these values).

Adding all the various contributions, Eqs. (19), (20),
(21) and (22), we arrive at

⇤M� |p�n = 1.30(03)(47) MeV , (23)

where the second uncertainty arises from the inelastic
contribution to the subtraction term. Clearly, any im-
provement in our knowledge of ⇥p�n will significantly
improve our ability to determine the electromagnetic con-
tribution to Mp �Mn.

The isovector magnetic polarizability– Within the
model assumptions used to arrive at Eqs. (18), we can
combine the experimental value for Mn � Mp with lat-
tice QCD determinations of the md � mu contribu-
tion. There are three published numbers from lattice
QCD [13, 15, 17], which are uncorrelated. For each re-
sult, we combine the quoted uncertainties in quadrature,
and then perform a simple weighted mean, arriving at

⇤M latt
md�mu

��
p�n

= �2.53(40) MeV . (24)

Combining this with Eqs. (1), (18b), (19), (20), (21) and
our value for m2

0, we find

⇥p�n = �0.87(85)⇥ 10�4 fm3 , (25)

in good agreement with current estimates [30].
Model independence– One can infer the nucleon isovec-

tor electromagnetic self-energy without recourse to mod-
els by utilizing the known mass splitting, Eq. (1), com-
bined with the lattice QCD determination of the of the
contribution from md �mu, Eq. (24),

⇤M�
p�n = 1.24(40) MeV . (26)

Combined with Eqs. (19) and (20), this can be trans-
lated into a model-independent bound on the unknown
subtraction function

3�

16⌅M

⇥ �2
0

0
dQ2 T p�n

1 (0, Q2) = 0.21(02)(40) MeV . (27)

This is compared with Eqs. (21) and (22) which give
0.15(02)(47) MeV for the same quantity. This bound
demonstrates that our treatment of the subtraction func-
tion, while not model-independent, is also not wildly
speculative, but in agreement with the combined con-
straint of experiment and lattice QCD.

Conclusions– We have provided a modern and ro-
bust determination of the isovector electromagnetic self-
energy contribution, ⇤M�

p�n = 1.30(03)(47). A technical
oversight in the evaluation of the elastic contribution was
highlighted resulting in a larger central value than pre-
viously obtained [28]. Modern knowledge of the struc-
ture functions was used to constrain the elastic and in-
elastic contributions, reducing the uncertainty from these
sources by an order of magnitude (±0.30 MeV [28] com-
pared to our ±0.03 MeV). However, a careful analysis
of the subtraction function has yielded an overall larger
uncertainty than previously recognized. The larger cen-
tral value suggests a larger contribution to Mp � Mn

from md �mu, consistent with expectations from lattice
QCD, thus impacting the phenomenology of Refs. [22–
27]. With plausible model assumptions and additional
input from lattice QCD, this knowledge can be used to
provide a competitive estimate of the nucleon isovector
magnetic polarizability, albeit still with a 100% uncer-
tainty. Alternatively, a bound can be placed on the un-
known subtraction function, which can not otherwise be
determined, and lends further support for our determi-
nation of ⇥p�n.
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show the contribution from the operator is numerically second 
order in isospin breaking with Naive Dimensional Analysis and 
suitable renormalization (dim. reg.)

quark mass operator renormalizes EM self-energy: can not 
cleanly separate these two contributions (but mixing is higher 
order in isospin breaking)
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⇥M�
UV ⇠ 3�f.s.

16⇤M

Z 1

�2


M2

Q2

Z 1

0
dx

⇣
2xF1(x) + F2(x)

⌘
� T1(0, Q

2)

�

subtraction 
function

use OPE to connect to perturbative QCD

log divergence arising from                          exactly 
cancels against log divergence from 

2xF1(x) + F2(x)
T1(0, Q

2)

counter term comes entirely from subtraction function
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⇥M� =
3�f.s.

16⇤M

(Z µ2

0

dQ2

Q2
f(Q2)

+ lim
�2!1

"Z �2

µ2

dQ2

Q2

 
f(Q2) +

X

i

C0
1,i�Oi,0⇥

!#)

⇥N |
X

i

C0
1,iOi,0|N⇤p�n =

2

Q2
(e2umu � e2dmd)⇥p|ūu� d̄d|p⇤

ln(�2)         divergence exactly cancels

residual dependence on scale µ

use Naive Dimensional Analysis to estimate size
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⇥M̃ ct = �3�

4⇤
⌅�N ln

✓
�2
1

�2
0

◆
3m̂� 5⇥

9m̂

⇥p|ūu� d̄d|p⇤
⇥p|ūu+ d̄d|p⇤

renormalization: [J.C. Collins Nucl. Phys. B149 (1979)]

saturate matrix elements 
in valence limit

⇤p|ūu� d̄d|p⌅
⇤p|ūu+ d̄d|p⌅

⇥ 1

3

��N =
1

2M
⇥p|m̂(ūu+ d̄d)|p⇤ � 45 MeV

�2
0 = 2 GeV2 , �2

1 = 100 GeV2
vary arbitrary scales in 
scaling region

|�M̃ ct| . 0.02 MeV

h
0.132(35)

i

Corsetti and Nath, !
PRD64 (2001)!
H. Cheng PLB (1989)
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subtraction term: most challenging part - dealing with unknown 
subtraction function

2

Tµ⇤ , for which there are two common parameterizations,

Tµ⇤(p, q) = �D(1)
µ⇤ T1(⇤,�q2) +D(2)

µ⇤ T2(⇤,�q2) (4a)

= d(1)µ⇤ q2t1(⇤,�q2)� d(2)µ⇤ q
2t2(⇤,�q2) (4b)

where p · q = M⇤ and

d(1)µ⇤ = D(1)
µ⇤ = gµ⇤ �

qµq⇤
q2

,

d(2)µ⇤ =
1

M2

⇤
pµp⇤ �

p · q
q2

(pµq⇤ + p⇤qµ) +
(p · q)2

q2
gµ⇤

⌅
,

D(2)
µ⇤ =

1

M2

⇤
pµ �

p · q
q2

qµ

⌅⇤
p⇤ �

p · q
q2

q⇤

⌅
, (5)

Performing the Wick rotation ⇤ ⇧ i⇤ and the variable
transformation Q2 = q2 + ⇤2, the self-energy becomes

⇥M� =
�

8⌅2

⌦ �2

0
dQ2

⌦ +Q

�Q
d⇤

↵
Q2 � ⇤2

Q2

Tµ
µ

M
+ ⇥M ct(�) (6)

where ⇥M ct(�) derives from counterterms required for
renormalization [34] and the Lorentz contracted Comp-
ton tensor is

Tµ
µ = �3T1(i⇤, Q

2) +

⇤
1� ⇤2

Q2

⌅
T2(i⇤, Q

2) , (7a)

= �3Q2 t1(i⇤, Q
2) +

⇤
1 + 2

⇤2

Q2

⌅
Q2t2(i⇤, Q

2) . (7b)

The scalar functions (Ti, ti) can be evaluated using a dis-
persive analysis. It is known the (T1, t1) functions require
a subtracted dispersive analysis while the (T2, t2) func-
tions can be evaluated with an unsubtracted dispersion
relation [32, 33]. In Ref. [28], it was claimed the elastic
contributions to t1 could be evaluated with an unsub-
tracted dispersive analysis. However, performing an un-
subtracted dispersive analysis of the elastic contributions
to Eqs. (7) by inserting a complete set of elastic states
into Eq. (2), leads to inconsistent results:

⇥Mel
unsub,a =

�

⌅

⌦ �2

0
dQ

⌥�
G2

E(Q
2)� 2⇧elG

2
M (Q2)

⇥ (1 + ⇧el)3/2 � ⇧el3/2 � 3
2

 
⇧el

1 + ⇧el
� 3

2
G2

M (Q2)
⇧el3/2

1 + ⇧el

�
, (8a)

⇥Mel
unsub,b =

�

⌅

⌦ �2

0
dQ

⌥�
G2

E(Q
2)� 2⇧el G

2
M (Q2)

⇥ (1 + ⇧el)3/2 � ⇧el3/2

1 + ⇧el
+ 3G2

M (Q2)
⇧el3/2

1 + ⇧el

�
, (8b)

with ⇧el ⌅ Q2

4M2 . If both parameterizations of the elastic
contribution were to satisfy unsubtracted dispersion rela-
tions, the following positive-definite integral would have
to vanish

3�

2⌅

⌦ ⇥

0
dQ
 
⇧el

G2
E(Q

2) + ⇧elG2
M (Q2)

1 + ⇧el
. (9)

Equating Eqs. (4a) and (4b) allows one to solve for Ti in
terms of ti and vice versa, and to demonstrate that if the
elastic contributions to T1(t1) do not satisfy an unsub-
tracted dispersive analysis, then neither will the elastic
contributions to t1(T1). Eq. (8b) was used in Ref. [28]
and is often quoted as the elastic contribution to the nu-
cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a
subtracted dispersive analysis of (T1, t1), and an unsub-
tracted analysis of (T2, t2), using a mass-independent
renormalization scheme (dimensional regularization) one
arrives at [34]

⇥M� = ⇥Mel + ⇥M inel + ⇥Msub + ⇥M̃ ct , (10)

with

⇥Mel =
�

⌅

⌦ �2
0

0
dQ

⌥
3
 
⇧elG2

M

2(1 + ⇧el)
+

�
G2

E � 2⇧el G2
M

⇥

1 + ⇧el

⇤
⇧
(1 + ⇧el)

3/2 � ⇧el
3/2 � 3

2

 
⇧el

⌃�
, (11)

⇥M inel =
�

⌅

⌦ �2
0

0

dQ2

2Q

⌦ ⇥

⇤th

d⇤

⌥

3F1(⇤, Q2)

M

⇧
⇧3/2 � ⇧

 
1 + ⇧ +

 
⇧/2

⇧

⌃

+
F2(⇤, Q2)

⇤

⇧
(1 + ⇧)3/2 � ⇧3/2 � 3

2

 
⇧

⌃�
, (12)

where ⇧ = ⇤2/Q2, Fi(⇤, Q2) are the standard nucleon
structure functions and ⇤t = m⌅ + (m2

⌅ +Q2)/2M ;

⇥Msub = � 3�

16⌅M

⌦ �2
0

0
dQ2 T1(0, Q

2) , (13)

and

⇥M̃ ct = � 3�

16⌅M

⌦ �2
1

�2
0

dQ2
 

i

C1,i⌥Oi,0� , (14)

low energy: constrained by effective field theory

3

with

⇤Mel =
�

⌃

⌦ �2
0

0
dQ

⌥
3
↵
⌥elG2

M

2(1 + ⌥el)
+

�
G2

E � 2⌥el G2
M

⇥

1 + ⌥el

⇧
(1 + ⌥el)

3/2 � ⌥el
3/2 � 3

2

↵
⌥el

⌃�
, (11)

⇤M inel =
�

⌃

⌦ �2
0

0

dQ2

2Q

⌦ ⇤

⇥th

d⇧

⌥
3F1(⇧, Q2)

M

⇧
⌥3/2 � ⌥

↵
1 + ⌥ +

↵
⌥/2

⌥

⌃

+
F2(⇧, Q2)

⇧

⇧
(1 + ⌥)3/2 � ⌥3/2 � 3

2

↵
⌥

⌃�
, (12)

where ⌥ = ⇧2/Q2, Fi(⇧, Q2) are the standard nucleon structure functions and ⇧th = m⇤ + (m2
⇤ +Q2)/2M ;

⇤Msub = � 3�

16⌃M

⌦ �2
0

0
dQ2 T1(0, Q

2) , (13)

and

⇤M̃ ct = � 3�

16⌃M

⌦ �2
1

�2
0

dQ2
 

i

C1,i�Oi,0 , (14)

where C1,i are Wilson coe⇤cients determined from the operator product expansion of the counterterms [? ]. The UV
divergence has been entirely cancelled by the counterterm and ⇤M̃ ct is a remaining finite contribution with residual
scale dependence. The scales �0 and �1 can be chosen arbitrarily provided their values are in the asymptotic scaling
region. Restricting our attention to the isospin breaking contribution, with 2⇤ = md � mu

⇤M̃ ct
p�n = 3� ln

⇤
�2
0

�2
1

⌅
e2umu � e2dmd

8⌃M⇤
�p|⇤(ūu � d̄d)|p (15)

with eu = 2/3 and ed = �1/3. In QCD, mu,d ⇤ ⇤, so the entire contribution is numerically second order in
isospin breaking, O(�⇤), and for practical purposes can be neglected [? ]. Estimating the size of this term, with
�2
1 = 100 GeV2, �2

0 = 2 GeV2 yields |⇤M̃ ct
p�n| < 0.02 MeV.

The remaining contribution to the self-energy is the subtraction term, which can not be directly related to exper-
imentally measured cross sections. We now have a better theoretical understanding of this term enabling a more
robust determination of its contribution than has been previously made. While the function is not known, the low
and high Q2 limits can be determined in a model independent fashion; the asymptotic region is constrained by the
operator product expansion (OPE) to scale as limQ⇥⇤ T1(0, Q2) ⇤ 1/Q2 [? ] while the low Q2 limit is fixed by
non-relativistic QED [? ? ? ? ? ]

T1(0, Q
2) = 2⌅(2 + ⌅) � Q2

⌥
2

3

�
(1 + ⌅)2r2M � r2E

⇥
+

⌅

M2
� 2M

⇥M

�

�
+O(Q4) , (16)

where ⌅ ⇥ F2(0) is the anomalous magnetic moment, rE(rM ) is proportional to the slope of the electric (magnetic) form
factor and commonly denoted as the nucleon electric (magnetic) charge radius and ⇥M is the magnetic polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges quadratically resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form required by the OPE, so we are necessarily led to introduce
model dependence. The first few terms in Eq. (16) are recognized as the low-Q2 expansion of elastic form factors and
the magnetic polarizability term is the leading inelastic contribution. In evaluating the elastic contributions to Tµ⇥

only the elastic u-spinors need be used in the dispersion relation. If one uses the full Feynman propagator in the full
amplitude, a procedure known to be correct in the point-limit (as for the electron), and vertex functions with ordinary
F1 and F2 form factor contributions, then the specific elastic terms of Eq. (16) would arise [? ? ]. This suggests a
re-summation in which one uses the appropriate elastic form factors. The inelastic contribution can be multiplied by
a dipole form factor (1 +Q2/m2

0)
�2, such that it has the correct asymptotic limits as Q2 ⌅ 0,⌃. The parameter m2

0
should be a typical hadronic scale and we will take m2

0 = 0.71 GeV2. The subtraction term is then approximated by
two pieces which have the correct low and high Q2 limiting behavior,

T1(0, Q
2) ⇧ 2G2

M (Q2) � 2F 2
1 (Q

2)

+Q22M
⇥M

�

⇤
m2

0

m2
0 +Q2

⌅2
, (17)

K. Pachucki: Phys. Rev. A53 (1996);  A. Pineda: Phys. Rev. C67 (2003); Phys. Rev. C71 (2005);  !
R.J. Hill, G. Paz: PRL 107 (2011);  C. Carlson, M. Vanderhaeghen: Phys.Rev.A84 (2011); arXiv1109.3779;  
M.. Birse, J. McGovern: arXiv:1206.3030

intimately related to the proton size puzzle which suffers from the 
same subtracted dispersive problem

most of these contributions come from Low Energy Theorems and are 
“elastic” (arising from a photon striking an on-shell nucleon)
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subtraction term: most challenging part - dealing with unknown 
subtraction function

2

Tµ⇤ , for which there are two common parameterizations,

Tµ⇤(p, q) = �D(1)
µ⇤ T1(⇤,�q2) +D(2)

µ⇤ T2(⇤,�q2) (4a)

= d(1)µ⇤ q2t1(⇤,�q2)� d(2)µ⇤ q
2t2(⇤,�q2) (4b)

where p · q = M⇤ and

d(1)µ⇤ = D(1)
µ⇤ = gµ⇤ �

qµq⇤
q2

,

d(2)µ⇤ =
1

M2

⇤
pµp⇤ �

p · q
q2

(pµq⇤ + p⇤qµ) +
(p · q)2

q2
gµ⇤

⌅
,

D(2)
µ⇤ =

1

M2

⇤
pµ �

p · q
q2

qµ

⌅⇤
p⇤ �

p · q
q2

q⇤

⌅
, (5)

Performing the Wick rotation ⇤ ⇧ i⇤ and the variable
transformation Q2 = q2 + ⇤2, the self-energy becomes

⇥M� =
�

8⌅2

⌦ �2

0
dQ2

⌦ +Q

�Q
d⇤

↵
Q2 � ⇤2

Q2

Tµ
µ

M
+ ⇥M ct(�) (6)

where ⇥M ct(�) derives from counterterms required for
renormalization [34] and the Lorentz contracted Comp-
ton tensor is

Tµ
µ = �3T1(i⇤, Q

2) +

⇤
1� ⇤2

Q2

⌅
T2(i⇤, Q

2) , (7a)

= �3Q2 t1(i⇤, Q
2) +

⇤
1 + 2

⇤2

Q2

⌅
Q2t2(i⇤, Q

2) . (7b)

The scalar functions (Ti, ti) can be evaluated using a dis-
persive analysis. It is known the (T1, t1) functions require
a subtracted dispersive analysis while the (T2, t2) func-
tions can be evaluated with an unsubtracted dispersion
relation [32, 33]. In Ref. [28], it was claimed the elastic
contributions to t1 could be evaluated with an unsub-
tracted dispersive analysis. However, performing an un-
subtracted dispersive analysis of the elastic contributions
to Eqs. (7) by inserting a complete set of elastic states
into Eq. (2), leads to inconsistent results:

⇥Mel
unsub,a =

�

⌅

⌦ �2

0
dQ

⌥�
G2

E(Q
2)� 2⇧elG

2
M (Q2)

⇥ (1 + ⇧el)3/2 � ⇧el3/2 � 3
2

 
⇧el

1 + ⇧el
� 3

2
G2

M (Q2)
⇧el3/2

1 + ⇧el

�
, (8a)

⇥Mel
unsub,b =

�

⌅

⌦ �2

0
dQ

⌥�
G2

E(Q
2)� 2⇧el G

2
M (Q2)

⇥ (1 + ⇧el)3/2 � ⇧el3/2

1 + ⇧el
+ 3G2

M (Q2)
⇧el3/2

1 + ⇧el

�
, (8b)

with ⇧el ⌅ Q2

4M2 . If both parameterizations of the elastic
contribution were to satisfy unsubtracted dispersion rela-
tions, the following positive-definite integral would have
to vanish

3�

2⌅

⌦ ⇥

0
dQ
 
⇧el

G2
E(Q

2) + ⇧elG2
M (Q2)

1 + ⇧el
. (9)

Equating Eqs. (4a) and (4b) allows one to solve for Ti in
terms of ti and vice versa, and to demonstrate that if the
elastic contributions to T1(t1) do not satisfy an unsub-
tracted dispersive analysis, then neither will the elastic
contributions to t1(T1). Eq. (8b) was used in Ref. [28]
and is often quoted as the elastic contribution to the nu-
cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a
subtracted dispersive analysis of (T1, t1), and an unsub-
tracted analysis of (T2, t2), using a mass-independent
renormalization scheme (dimensional regularization) one
arrives at [34]

⇥M� = ⇥Mel + ⇥M inel + ⇥Msub + ⇥M̃ ct , (10)

with
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where ⇧ = ⇤2/Q2, Fi(⇤, Q2) are the standard nucleon
structure functions and ⇤t = m⌅ + (m2

⌅ +Q2)/2M ;

⇥Msub = � 3�

16⌅M

⌦ �2
0

0
dQ2 T1(0, Q

2) , (13)

and

⇥M̃ ct = � 3�

16⌅M

⌦ �2
1

�2
0

dQ2
 

i

C1,i⌥Oi,0� , (14)

high energy: OPE (perturbative QCD) constrains

lim
Q2!1

T1(0, Q
2) / 1

Q2

T1(0, Q
2) ' 2G2

M (Q2)� 2F 2
1 (Q

2) +Q22M
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�

✓
m2

0

m2
0 +Q2

◆2

Birse and McGovern Eur.Phys.J A48 (2012) [arXiv:1206.3030]

O(Q4) inelastic terms known
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3

where C1,i are Wilson coe⌅cients determined from the
operator product expansion of the counterterms [34].
The UV divergence has been entirely cancelled by the
counterterm and ⇤M̃ ct is a remaining finite contribution
with residual scale dependence. The scales �0 and �1

can be chosen arbitrarily provided their values are in the
asymptotic scaling region. Restricting our attention to
the isospin breaking contribution, with 2⇤ = md � mu

⇤M̃ ct
p�n = 3� ln

⌅
�2
0

�2
1

⇧
e2umu � e2dmd

8⌃M⇤
�p|⇤(ūu� d̄d)|p 

(15)

with eu = 2/3 and ed = �1/3. In QCD, mu,d ⇤ ⇤, so the
entire contribution is numerically second order in isospin
breaking, O(�⇤), and for practical purposes can be ne-
glected [34]. Estimating the size of this term, with �2

1 =

100 GeV2, �2
0 = 2 GeV2 yields |⇤M̃ ct

p�n| < 0.02 MeV.
The remaining contribution to the self-energy is the

subtraction term, which can not be directly related to
experimentally measured cross sections. We now have a
better theoretical understanding of this term enabling
a more robust determination of its contribution than
has been previously made. While the function is not
known, the low and high Q2 limits can be determined
in a model independent fashion; the asymptotic region is
constrained by the operator product expansion (OPE) to
scale as limQ⇥⇤ T1(0, Q2) ⇤ 1/Q2 [34] while the low Q2

limit is fixed by non-relativistic QED [35–39]

T1(0, Q
2) = 2⌅(2 + ⌅) � Q2

�
2

3

�
(1 + ⌅)2r2M � r2E

⇥

+
⌅

M2
� 2M

⇥M

�

 
+O(Q4) , (16)

where ⌅ ⇥ F2(0) is the anomalous magnetic moment,
rE(rM ) is proportional to the slope of the electric (mag-
netic) form factor and commonly denoted as the nucleon
electric (magnetic) charge radius and ⇥M is the magnetic
polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges
quadratically resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form
required by the OPE, so we are necessarily led to intro-
duce model dependence. The first few terms in Eq. (16)
are recognized as the low-Q2 expansion of elastic form
factors and the magnetic polarizability term is the lead-
ing inelastic contribution. In evaluating the elastic con-
tributions to Tµ⇥ only the elastic u-spinors need be used
in the dispersion relation. If one uses the full Feynman
propagator in the full amplitude, a procedure known to
be correct in the point-limit (as for the electron), and
vertex functions with ordinary F1 and F2 form factor
contributions, then the specific elastic terms of Eq. (16)
would arise [39, 40]. This suggests a re-summation in
which one uses the appropriate elastic form factors. The
inelastic contribution can be multiplied by a dipole form
factor (1+Q2/m2

0)
�2, such that it has the correct asymp-

totic limits as Q2 ⌅ 0,⌃. The parameterm2
0 should be a

typical hadronic scale and we will take m2
0 = 0.71 GeV2.

The subtraction term is then approximated by two pieces
which have the correct low and high Q2 limiting behav-
ior,

T1(0, Q
2) ⇧ 2G2

M (Q2) � 2F 2
1 (Q

2)

+Q22M
⇥M

�

⌅
m2

0

m2
0 +Q2

⇧2

, (17)

leading to the convenient separation

⇤Msub
el = � 3�

16⌃M

⌦ �2
0

0
dQ2

⌃
2G2

M � 2F 2
1

⌥
, (18a)

⇤Msub
inel = �3⇥M

8⌃

⌦ �2
0

0
dQ2Q2

⌅
m2

0

m2
0 +Q2

⇧2

. (18b)

The second term, generated using the model assumptions
described above, will cause the largest uncertainties, as
we show below.
Evaluation of contributions– In all subsequent evalua-

tions, we take �2
0 = 2 GeV2 for our central values and the

range 1.52 < �2
0 < 2.5 GeV2 to estimate uncertainties.

We begin with an evaluation of the elastic contribution,
Eq. (11). The form factors are well measured over the
kinematic range required by the integrals, which are rep-
resented by a number of analytic fits. The elastic contri-
butions converge well at the upper limit, which may be
taken to infinity with negligible error. Using the Kelly
parameterization of the form factors [41], or an updated
version [42–44], the elastic contribution is given by

⇤Mel
⇤⇤
p�n

= 1.39(02) MeV . (19)

The uncertainty is determined through an uncorrelated
Monte-Carlo evaluation of the fit parameters in the
parametrization.It is also interesting to note, that if the
simple dipole parameterization of the form factors is
used, the same value within the quoted uncertainty is
obtained.
In the inelastic contribution, Eq. (12), most of the

support for the integrals lies in the resonance region,
where there are good data from JLab, and there are
analytic fits valid in the resonance region for both the
neutron and proton structure functions from Bosted and
Christy [45, 46] (we also remind the reader the neu-
tron functions are determined from deuterium-Compton
scattering with the additional uncertainties captured in
the coe⌅cients of the neutron functions, and propagated
into our uncertainties through a Monte-Carlo treatment).
Their quoted range of validity includes Q2 up to 8 GeV2

and W up to 3.1 GeV (W 2 = M2 + 2M⇧ � Q2). To
extend the W range, we use the parameterizations of
Refs. [47, 48] which fit proton structure functions in the
di⇥raction region using forms recognizable as Pomeron
and rho meson Regge trajectories. The former is isoscalar
and the latter isovector, so we have a straightforward ex-
tension to the neutron case. Taking �2

0 = 2 GeV2 and

subtraction term: most challenging part - dealing with unknown 
subtraction function

�Msub
el

���
p�n

= �0.62 MeV

�p�n
M = �1.0± 1.0⇥ 10�4 fm3

H.W. Griesshammer, J.A. McGovern, !
D.R. Phillips, G. Feldman: 
Prog.Nucl.Part.Phys. (2012)

taking m2
0 = 0.71 GeV2

�Msub
inel

���
p�n

= 0.47± 0.47 MeV
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adding it all up:

�M� |p�n =+ 1.39(02)

� 0.62(02)

+ 0.057(16)

+ 0.47(47) MeV

= 1.30(03)(47) MeV

= 0.77(03) MeV
elastic 
terms

inelastic terms

unknown subtraction term

recall the fixed pole in the elastic contribution makes a 
negligible contribtion
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adding it all up:

�M�
���
p�n

= 1.30(03)(47) MeV AWL, C.Carlson, G.Miller: !
PRL 108 (2012)

= 0.76(30) MeV J. Gasser and H. Leutwyler: !
Nucl Phys B94 (1975)

We reduced the uncertainty from structure by an order of 
magnitude!  But we uncovered an oversight that dominates the 
uncertainty   :(
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adding it all up:

�M�
���
p�n

= 1.30(03)(47) MeV AWL, C.Carlson, G.Miller: !
PRL 108 (2012)

= 0.76(30) MeV J. Gasser and H. Leutwyler: !
Nucl Phys B94 (1975)

expectation from experiment + lattice QCD

average of 5 independent lattice 
results

�M�
p�n = �1.29333217(42) + 2.39(21) MeV

= 1.10(21) MeV
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subtraction term: most challenging part - dealing with unknown 
subtraction function

�p�n
M = �1.0± 1.0⇥ 10�4 fm3

H.W. Griesshammer, J.A. McGovern, !
D.R. Phillips, G. Feldman: 
Prog.Nucl.Part.Phys. (2012)

⇥Msub
inel = �3�M

8⇤

Z �2
0

0
dQ2Q2

✓
m2

0

m2
0 +Q2

◆2

computing        from lattice QCD!
W. Detmold, B. Tiburzi, AWL

�p,n
M



Strong Isospin Breaking: md - mu

⇥Mmd�mu
n�p = �(md �mu)



Introduction: Mn - Mp

1.5 2.0 2.5 3.0 3.5

�Mmd�mu
n�p [MeV]

2.26(71) NPLQCD [hep-lat/0605014]

2.51(52) Blum et. al. [1006.1311]

3.13(57) QCDSF-UKQCD [1206.3156]

2.90(63) RM123 [1303.4896]

2.28(26) BMWc [1306.2287]

2.39(21) weighted average

What do we know?

�Mmd�mu
n�p = 2.39(21) MeV
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strong isospin breaking correction

⇥Mmd�mu
n�p = �(md �mu)

ideal problem for lattice QCD

lattice average

But in lattice calculations                         ?!
(except latest)

mu = md = ml

Beane, Orginos, Savage  Nucl. Phys. B768 (2007)
B. Tiburzi, AWL  Nucl. Phys.  A764 (2006)

AWL  arXiv:0904.2404
Blum, Izubuchi, etal  Phys. Rev. D82 (2010)

AWL  PoS Lattice2010 (2010)
de Divitiis etal  JHEP 1204 (2012)

Horsley etal  Phys. Rev. D86 (2012)
de Divitiis etal  Phys. Rev. D87 (2013)

Borsanyi etal  arXiv:1306.2287

�Mmd�mu
n�p = 2.39(21) MeV



Strong Isospin Breaking: md - muStrong Isospin Breaking: md - mu

strong isospin breaking correction

⇥Mmd�mu
n�p = �(md �mu)

ideal problem for lattice QCD

lattice average

mvalence
u,d 6= msea

l

“partially quenched” lattice 
QCD trick that works on the 
computer but introduces error 
which must be corrected

valence

sea

Beane, Orginos, Savage  Nucl. Phys. B768 (2007)
B. Tiburzi, AWL  Nucl. Phys.  A764 (2006)

AWL  arXiv:0904.2404
Blum, Izubuchi, etal  Phys. Rev. D82 (2010)

AWL  PoS Lattice2010 (2010)
de Divitiis etal  JHEP 1204 (2012)

Horsley etal  Phys. Rev. D86 (2012)
de Divitiis etal  Phys. Rev. D87 (2013)

Borsanyi etal  arXiv:1306.2287

�Mmd�mu
n�p = 2.39(21) MeV



Strong Isospin Breaking: md - muStrong Isospin Breaking: md - mu

strong isospin breaking correction

⇥Mmd�mu
n�p = �(md �mu)

ideal problem for lattice QCD

lattice average

can we improve this method?

of course!

“Symmetric breaking of isospin symmetry” AWL  arXiv:0904.2404

Beane, Orginos, Savage  Nucl. Phys. B768 (2007)
B. Tiburzi, AWL  Nucl. Phys.  A764 (2006)

AWL  arXiv:0904.2404
Blum, Izubuchi, etal  Phys. Rev. D82 (2010)

AWL  PoS Lattice2010 (2010)
de Divitiis etal  JHEP 1204 (2012)

Horsley etal  Phys. Rev. D86 (2012)
de Divitiis etal  Phys. Rev. D87 (2013)

Borsanyi etal  arXiv:1306.2287

�Mmd�mu
n�p = 2.39(21) MeV



Strong Isospin Breaking: md - muStrong Isospin Breaking: md - mu
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msea
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msea
u,d = ml, mvalence

u = ml � �, mvalence
d = ml + �

4

Expanding about the continuum limit, the e⇥ective continuum Lagrangian for the quarks can be written (to LO in
the lattice spacing)

L = q̄
⌥
D/ + (m� ⇥⇧v

3 ) ei⌃⇧vs
3 �5 + a csw i⌅µ⌅Fµ⌅

�
q . (16)

The renormalized quark mass is defined in the standard way with

m� ⇥ m cos(⌥) = Zm(m0 �mc)/a , (17)
µ ⇥ m sin(⌥) = Zµµ0/a . (18)

Here, mc is the critical mass (defined up to an O(a) shift). The twisted mass term, iµ⇧vs
3 �5, is protected from additive

mass corrections from the symmetries of the action (up to the O(⇥2) corrections mentioned above). The twist angle
is defined through the ratio tan(⌥) = µ/m�. Similarly, the valence isospin breaking mass term will also be protected
from additive mass renormalization (to all orders),

⇥ = Z⇥⇥0/a . (19)

There are additional operators at O(a), but these are suppressed by additional powers of the quark masses and will
not modify the construction of the chiral Lagrangian through NLO [24]. The resulting partially quenched meson
Lagrangian is given through O(m2

q, mqa, a2) by

L(PQ) =
f2

8
str
�
↵µ�↵µ�†⇥� f2

8
str
�
⌃�†� + �†⌃�⇥� L(PQ)

1

⇤
str
�
↵µ�↵µ�†⇥⌅2 � L(PQ)

2 str
�
↵µ�↵⌅�†⇥ str

�
↵µ�↵⌅�†⇥

� L(PQ)
3 str

�
↵µ�↵µ�†↵⌅�↵⌅�†⇥+ L(PQ)

4 str
�
↵µ�↵µ�†⇥ str

�
⌃�†� + �†⌃�⇥� L(PQ)

6

⇤
str
�
⌃�†� + �†⌃�⇥⌅2

+ L(PQ)
5 str

�
↵µ�↵µ�† �⌃�†� + �†⌃�⇥⇥� L(PQ)

7

⇤
str
�
⌃�†�� �†⌃�⇥⌅2 � L(PQ)

8 str
�
⌃�†�⌃�†� + �†⌃��†⌃�⇥

+ W (PQ)
4 str

�
↵µ�↵µ�†⇥ str

⇧
Â†� + �†Â

⌃
+ W (PQ)

5 str
⇧
↵µ�↵µ�†

⇧
Â†� + �†Â

⌃⌃

�W (PQ)
6 str

�
⌃�†� + �†⌃�⇥ str

⇧
Â†� + �†Â

⌃
�W (PQ)

7 str
�
⌃�†�� �†⌃�⇥ str

⇧
Â†�� �†Â

⌃

�W (PQ)
8 str

⇧
⌃�†�Â†� + �†⌃��†Â

⌃
�W �(PQ)

6

⌥
str
⇧
Â†� + �†Â

⌃�2
�W �(PQ)

8 str
⇧
Â†�Â†� + �†Â�†Â

⌃
.

(20)

Here, we have already absorbed the leading discretization e⇥ects into a redefinition of ⌃ [48];

⌃� = 2B0

⇧
m� + iµ⇧vs

3 � ⇥⇧v
3 ei⌃⇧vs

3

⌃
+ 2W0a

⇥ m̂� + iµ̂⇧vs
3 � ⇥̂⇧v

3 ei⌃⇧vs
3 + â

Â = 2W0a ⇥ â (21)

Further, we assume a power counting
 

(m̂� + â)2 + µ̂2 ⇤ ⇥̂ ⇤ â . (22)

The Lagrangian (20) is then the complete NLO meson Lagrangian relevant for our work. To extract relevant physics
information, this Lagrangian must be matched to its non partially quenched counterpart. The unquenched Lagrangian
is given by [24]

L =
f2

8
tr
�
↵µ�↵µ�†⇥� f2

8
tr
�
⌃�†� + �†⌃�⇥� l1

4
⇤
tr
�
↵µ�↵µ�†⇥⌅2 � l2

4
tr
�
↵µ�↵⌅�†⇥ tr

�
↵µ�↵⌅�†⇥

� l3 + l4
16

⇤
tr
�
⌃�†� + �†⌃�⇥⌅2 +

l4
8

tr
�
↵µ�↵µ�†⇥ tr

�
⌃�†� + �†⌃�⇥� l7

16
⇤
tr
�
⌃�†�� �†⌃�⇥⌅2

+ W̃ tr
�
↵µ�↵µ�†⇥ tr

⇧
Â†� + �†Â

⌃
�W tr

�
⌃�†� + �†⌃�⇥ tr

⇧
Â†� + �†Â

⌃
�W �

⌥
tr
⇧
Â†� + �†Â

⌃�2

�W7 tr
�
⌃�†�� �†⌃�⇥ tr

⇧
Â†�� �†Â

⌃
. (23)

m2
�± = 2Bml

⇢
1 +

m2
�

(4�f�)2
ln

✓
m2

�

µ2

◆
+

4m2
�

f2
�

lr4(µ)

�
�

�4
PQ

2(4�f�)2

m2
⇡0 = m2

⇡± +
16B2�2

f2
⇡

l7

�2
PQ = 2B�

Pion Chiral Lagrangian
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msea
u,d = ml, mvalence

u = ml � �, mvalence
d = ml + �

Can also construct the partially quenched 
baryon chiral Lagrangian

(2� = md �mu)

Problematic terms exactly drop out of  expansion for mass difference! 
This only works for this symmetric choice of  partial quenching

Mn �Mp = �(md �mu) +O(⇥2,m2
�⇥)

Mp = M0 � �⇥ +ml(�+ ⌅N )� 3⇤g2A
(4⇤f�)2

m3
� � 8g2�N�

3(4⇤f�)2
F(m�,�, µ) +

3⇤�4
PQ(gA + g1)2

8m�(4⇤f�)2

Mn = M0 + �⇥ +ml(�+ ⌅N )� 3⇤g2A
(4⇤f�)2

m3
� � 8g2�N�

3(4⇤f�)2
F(m�,�, µ) +

3⇤�4
PQ(gA + g1)2

8m�(4⇤f�)2
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lattice QCD calculation performed 
using the Spectrum Collaboration 
anisotropic clover-Wilson gauge 
ensembles (developed @ JLAB)

ensemble m� mK at� [Ncfg �Nsrc]

L T atml atms [MeV] [MeV] 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0743 500 647 207� 16 207� 16 207� 16 207� 16

16 128 -0.0840 -0.0743 426 608 166� 25 166� 25 166� 25 166� 50

20 128 -0.0840 -0.0743 426 608 120� 25 – – –

24 128 -0.0840 -0.0743 426 608 97� 25 – 193� 25 –

32 256 -0.0840 -0.0743 426 608 291� 10 291� 10 291� 10 –

24 128 -0.0860 -0.0743 244 520 118� 26 – – –

32 256 -0.0860 -0.0743 244 520 842� 11 – – –

ensemble parameters valence quark masses

volume atml atms

163 � 128 -0.0830 -0.0743 atmval
l = atml ± {0.0000, 0.0002, 0.0004, 0.0010}

atmval
s = atms + {0.0000, 0.0015, 0.0030}

163 � 128 -0.0840 -0.0743 atmval
l = atml ± {0.0000, 0.0002, 0.0004, 0.0010, 0.0020}

atmval
s = atms

203 � 128 -0.0840 -0.0743 atmval
l = atml ± {0.0000, 0.0002}

atmval
s = atms

243 � 128 -0.0840 -0.0743 atmval
l = atml ± {0.0000, 0.0002}

atmval
s = atms

323 � 256 -0.0840 -0.0743 atmval
l = atml ± {0.0000, 0.0002, 0.0004, 0.0010}

atmval
s = atms + {0.0000, 0.0015, 0.0030}

323 � 256 -0.0860 -0.0743 atmval
l = atml ± {0.0000, 0.0002}

atmval
s = atms + {0.0000, 0.0015, 0.0030}

I. INTRODUCTION

II. DETAILS OF THE LATTICE CALCULATION

The calculations presented in this work were performed on the Hadron Spectrum Col-
laboration (HSC) anisotropic clover-Wilson ensembles [1]. There have been a number of
important calculations performed on these ensembles... HSC, NPLQCD, EMC, ... The aim
of this work is to perform a detailed analysis of the scale setting, the quark mass renor-
malization and the light-quark mass dependence of the ground state hadron spectrum. The
HSC ensembles exist for a variety of light quark masses and volumes but just a single lattice
spacing with fixed renormalized anisotropy � = as/at = 3.5.

III. LIGHT-QUARK MASS DEPENDENCE AND SCALE SETTING

A. Pseudo-Nambu-Goldstone mesons, �� and scale setting

We will use the omega mass to set the scale, since it is expected to have the simplest
light quark mass dependence of all the baryons. The strategy is to extrapolate atm�(l�, s�)

3

M⌦ scale setting

PRELIMINARY
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(gA = 1.27, f� = 130 MeV)

�2/dof = 1.66/5 = 0.33
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�2/dof = 1.66/5 = 0.33

this is striking evidence of  a chiral logarithm
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(lattice average)

Mn �Mp = ⇥M�
n�p + ⇥Mmd�mu

n�p

= �178(04)(64) MeV⇥ �f.s. + 1.08(6)(9)⇥ (md �mu)

my value soon to be added

for now - freeze electromagnetic coupling and just look 
at effects of quark mass splitting

Big Bang Nucleosynthesis highly constrains variation of!
and hence variation of fundamental constants

considering          and                 simultaneously relaxes 
constraints (not yet simultaneously considered)

↵f.s. md �mu

Mn �Mp
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t ⇠ 1 sec t ⇠ 3 min
T ⇠ 1 MeV T ⇠ 0.1 MeV

e�
⌫̄e

t ⇠ 15min
T ⇠ 0.1� MeV
t ⇠ 3+ min

⌧n

T ⇠ 0.01 MeV

Initial conditions
neutron !
lifetime

Xn

Xp
= e�

Mn�Mp
T

focus on leading 
isospin breaking



Big Bang Nucleosynthesis and Mn �Mp

0.6 0.8 1.0 1.2 1.4

mn � mp [MeV]
0.0

0.2

0.4

0.6

0.8

1.0

proton mass fraction
4He mass fraction
low metalicity HII
CMB constraint

PRELIMINARY

P. Banerjee, T. Luu,  AWL

Mn �Mp



Big Bang Nucleosynthesis and Mn �Mp

1.8 2.0 2.2 2.4 2.6

md � mu [MeV], MS(µ = 2GeV)

0.0

0.2

0.4

0.6

0.8

1.0

proton mass fraction
4He mass fraction
low metalicity HII
CMB constraint

�md�mu

PRELIMINARY

P. Banerjee, T. Luu,  AWL

Lattice 
QCD

A precise determination of     + BBN can constrain md �mu↵

⇥Mmd�mu
n�p ⌘ �(md �mu)
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g0(⇤̄) = ⇥Mmd�mu
n�p

2mdmu sin(⇤̄)

(md +mu)(md �mu)

= sin(⇤̄)�
2mdmu

(md +mu)

BONUS

long range CP interaction!
dominates nuclear EDMs

Electric Dipole Moments

g0(�̄)CP

I am computing this !
with lattice QCD

N

N

⇡

The world’s most stringent constraint on an EDM from Atomic measurement Hg!
competitive constraint on Griffith, Swallows, Loftus, Romalis, Heckel, Fortson !

PRL 102 101601 (2009)
✓̄

⇥Mmd�mu
n�p ⌘ �(md �mu)

I will compute nuclear-EDMs for generic quark-EDMs

FRIB will produce large octupole deformed nuclei with O(104) enhancement



Conclusions
related a simple quantity                 to the primordial abundance of light 
nuclear elements, formed in the first few minutes after the Big Bang

Mn �Mp

showed how modern knowledge of nucleon structure can be used to 
determine the electromagnetic self-energy contribution

improvements will come with a determination of the iso-vector nucleon 
magnetic polarizability - either experimentally of from lattice QCD

the strong contribution                   can only be determined with lattice 
QCD: I showed you what we know now and a calculation I am performing 
that will hopefully improve the precision

(md �mu)

this was just a simple example of exciting connections we can now 
make between the universe and QCD because of the tremendous 
growth of lattice QCD as a tool for non-perturbative QCD phenomena

Nuclear Physics is in the beginning of  a 
renaissance with Lattice QCD and EFT



Thank You


